Difference between revisions of "Relationship between logarithmic integral and exponential integral"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denot...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The following formula holds: | + | <strong>[[Relationship between logarithmic integral and exponential integral|Theorem]]:</strong> The following formula holds: |
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | ||
where $\mathrm{li}$ denotes the [[logarithmic integral]] and $\mathrm{Ei}$ denotes the [[exponential integral]]. | where $\mathrm{li}$ denotes the [[logarithmic integral]] and $\mathrm{Ei}$ denotes the [[exponential integral]]. |
Revision as of 06:45, 5 April 2015
Theorem: The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denotes the logarithmic integral and $\mathrm{Ei}$ denotes the exponential integral.
Proof: █