Difference between revisions of "Q-Binomial"
From specialfunctionswiki
m (Tom moved page Q-Binomial function to Q-Binomial) |
|||
Line 25: | Line 25: | ||
=References= | =References= | ||
*Special Functions - G. Andrews, R. Askey, R. Roy | *Special Functions - G. Andrews, R. Askey, R. Roy | ||
+ | |||
+ | {{:q-calculus footer}} |
Revision as of 06:56, 5 April 2015
The $q$-Binomial function is $${n \brack k}_q = \dfrac{(q;q)_n}{(q;q)_k (q;q)_{n-k}},$$ where $(q;q)_k$ is the q-Pochhammer symbol.
Properties
Theorem: For $|x|<1,|q|<1$, $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}}.$$
Proof: proof goes here █
Corollary:
- $\displaystyle\sum_{k=0}^{\infty} \dfrac{x^k}{(q;q)_k} = \dfrac{1}{(x;q)_{\infty}}; |x|<1,|q|<1$
- $\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kq^{k \choose 2}x^k}{(q;q)_k} =(x;q)_{\infty} ; |q|<1$
- $\displaystyle\sum_{k=0}^N {N \brack k}_q (-1)^k q^{k \choose 2} x^k = (x;q)_N = (1-x)\ldots(1-xq^{N-1})$
- $\displaystyle\sum_{k=0}^{\infty} {{N+k-1} \brack k}_q x^k = \dfrac{1}{(x;q)_N} = \dfrac{1}{(1-x)\ldots(1-xq^{N-1})} ;|x|<1$
Proof: proof goes here █
References
- Special Functions - G. Andrews, R. Askey, R. Roy