Difference between revisions of "Pi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 10: Line 10:
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> The real number $\pi$ is an [[irrational number]].
+
<strong>Theorem:</strong> The real number $\pi$ is [[irrational]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 15:49, 7 April 2015

A circle in Euclidean plane geometry is defined to be the set of points equidistant from a center point. The length around a circle is called its circumference and the length a line from the circle through the center is called a diameter of the circle. All diameters have the same length by definition of the circle. Let $A$ be a circle. The number $\pi$ is defined to be the ratio $\dfrac{C}{D}$ where $C$ is the circumference of $A$ and $D$ the diameter of $A$. It requires proof to show that the value obtained from the circle $A$, call this $\pi_A$, is the same number one obtains from another circle $B$, the value $\pi_B$.

Properties

Theorem: The value of $\pi$ is independent of which circle it is defined for.

Proof:

Theorem: The real number $\pi$ is irrational.

Proof:

References

Proof that $\pi$ is constant for all circles without using limits

Proof that $\pi$ exists (video)

Proof that $\pi$ exists

The story of $\pi$ by Tom Apostol (video)

A simple proof that $\pi$ is irrational by Ivan Niven