Difference between revisions of "Golden ratio"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$")
 
Line 1: Line 1:
 
The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$
 
The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$2\sin(i \log(\varphi))=i,$$
 +
where $\sin$ denotes the [[sine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
=References=
 +
[http://www.johndcook.com/blog/2014/02/17/imaginary-gold/]

Revision as of 04:03, 11 April 2015

The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$

Properties

Theorem: The following formula holds: $$2\sin(i \log(\varphi))=i,$$ where $\sin$ denotes the sine function, $i$ denotes the imaginary number, $\log$ denotes the logarithm, and $\varphi$ denotes the golden ratio.

Proof:

References

[1]