Difference between revisions of "Q-exponential e sub q"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "a")
 
Line 1: Line 1:
a
+
The $q$-exponential $e_q$ is defined by the formula
 +
$$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$
 +
where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]] and $(q;q)_k$ denotes the [[q-Pochhammer symbol|$q$-Pochhammer symbol]].

Revision as of 22:03, 2 May 2015

The $q$-exponential $e_q$ is defined by the formula $$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$ where $[k]_q!$ denotes the $q$-factorial and $(q;q)_k$ denotes the $q$-Pochhammer symbol.