Difference between revisions of "Q-exponential e sub q"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$ | $$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$ | ||
where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]] and $(q;q)_k$ denotes the [[q-Pochhammer symbol|$q$-Pochhammer symbol]]. | where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]] and $(q;q)_k$ denotes the [[q-Pochhammer symbol|$q$-Pochhammer symbol]]. | ||
+ | |||
+ | =Properties= | ||
+ | {{:Q-Euler formula for e sub q}} |
Revision as of 23:46, 3 May 2015
The $q$-exponential $e_q$ is defined by the formula $$e_q(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$ where $[k]_q!$ denotes the $q$-factorial and $(q;q)_k$ denotes the $q$-Pochhammer symbol.
Contents
Properties
Theorem
The following formula holds: $$e_q(iz)=\cos_q(z)+i\sin_q(z),$$ where $e_q$ is the $q$-exponential $e_q$, $\cos_q$ is the $q$-$\cos$ function and $\sin_q$ is the $q$-$\sin$ function.