Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
 
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
  
[[File:Complex ArcSinh.jpg|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Complex ArcSinh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arcsinh}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 05:45, 16 May 2015

The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$

Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$

Proof:

<center>Inverse hyperbolic trigonometric functions
</center>