Difference between revisions of "Arcsinh"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$ | $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$ | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Complex ArcSinh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arcsinh}$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Revision as of 05:45, 16 May 2015
The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
Domain coloring of analytic continuation of $\mathrm{arcsinh}$.
Properties
Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$
Proof: █