Difference between revisions of "Fresnel C"
From specialfunctionswiki
Line 17: | Line 17: | ||
</div> | </div> | ||
− | {{:*-integral functions footer}} | + | <center>{{:*-integral functions footer}}</center> |
Revision as of 22:53, 19 May 2015
The Fresnel C function is defined by the formula $$C(x)=\int_0^x \cos(t^2) dt.$$
- Fresnel.png
Fresnel integrals on $\mathbb{R}$.
Properties
Theorem: The following limit is known: $$\displaystyle\lim_{x \rightarrow \infty} C(x) = \displaystyle\int_0^{\infty} \cos(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$
Proof: █