Difference between revisions of "Tanhc"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{tanhc}$ function is defined by
 
The $\mathrm{tanhc}$ function is defined by
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
<center>{{:*-c functions footer}}</center>
 
<center>{{:*-c functions footer}}</center>

Revision as of 23:14, 19 May 2015

The $\mathrm{tanhc}$ function is defined by $$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$

Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$

Proof:

<center>$*$-c functions
</center>