Difference between revisions of "Tanhc"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{tanhc}$ function is defined by
 
The $\mathrm{tanhc}$ function is defined by
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 +
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complex tanhc.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{tanhc}(z)$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 23:16, 19 May 2015

The $\mathrm{tanhc}$ function is defined by $$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$


Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$

Proof:

<center>$*$-c functions
</center>