Difference between revisions of "Coshc"
From specialfunctionswiki
(Created page with "The $\mathrm{coshc}$ function is defined by $$\mathrm{coshc}(z) = \dfrac{\mathrm{cosh}(z)}{z}.$$ <center>{{:*-c functions footer}}</center>") |
|||
Line 1: | Line 1: | ||
The $\mathrm{coshc}$ function is defined by | The $\mathrm{coshc}$ function is defined by | ||
$$\mathrm{coshc}(z) = \dfrac{\mathrm{cosh}(z)}{z}.$$ | $$\mathrm{coshc}(z) = \dfrac{\mathrm{cosh}(z)}{z}.$$ | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complex coshc.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{coshc}$. | ||
+ | </gallery> | ||
+ | </div> | ||
<center>{{:*-c functions footer}}</center> | <center>{{:*-c functions footer}}</center> |
Revision as of 23:19, 19 May 2015
The $\mathrm{coshc}$ function is defined by $$\mathrm{coshc}(z) = \dfrac{\mathrm{cosh}(z)}{z}.$$
- Complex coshc.png
Domain coloring of analytic continuation of $\mathrm{coshc}$.