Difference between revisions of "Q-Pochhammer"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 5: Line 5:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$(q;q)_{\infty} = \displaystyle\sum_{k=-\infty}^{\infty} (-1)^n q^{\frac{3k^2-k}{2}}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$(x;q)_{\infty} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kq^{ {k \choose 2} }x^k}{(q;q)_k}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
{{:Relationship between q-factorial and q-pochhammer}}
 
{{:Relationship between q-factorial and q-pochhammer}}
 
{{:Relationship between Euler phi and q-Pochhammer}}
 
{{:Relationship between Euler phi and q-Pochhammer}}
  
 
{{:q-calculus footer}}
 
{{:q-calculus footer}}

Revision as of 18:02, 20 May 2015

$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^j)$$ $$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^j)$$

$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$

Properties

Theorem: The following formula holds: $$(q;q)_{\infty} = \displaystyle\sum_{k=-\infty}^{\infty} (-1)^n q^{\frac{3k^2-k}{2}}.$$

Proof:

Theorem: The following formula holds: $$(x;q)_{\infty} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kq^{ {k \choose 2} }x^k}{(q;q)_k}.$$

Proof:

Relationship between q-factorial and q-pochhammer Relationship between Euler phi and q-Pochhammer

$q$-calculus