Difference between revisions of "Shi"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$ | $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$ | ||
− | {{:*-integral functions footer}} | + | <center>{{:*-integral functions footer}}</center> |
Revision as of 19:01, 6 June 2015
The hyperbolic sine integral is defined by the formula $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$