Difference between revisions of "Shi"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
 
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
  
{{:*-integral functions footer}}
+
<center>{{:*-integral functions footer}}</center>

Revision as of 19:01, 6 June 2015

The hyperbolic sine integral is defined by the formula $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$

<center>$\ast$-integral functions
</center>