Difference between revisions of "Bessel Y"

From specialfunctionswiki
Jump to: navigation, search
Line 6: Line 6:
 
File:Bessel y plot.png|Graph of $Y_0,Y_1,\ldots,Y_5$ on $[0,20]$.
 
File:Bessel y plot.png|Graph of $Y_0,Y_1,\ldots,Y_5$ on $[0,20]$.
 
File:Complex bessel y sub 0.png|[[Domain coloring]] of [[analytic continuation]] of $Y_0(z)$.
 
File:Complex bessel y sub 0.png|[[Domain coloring]] of [[analytic continuation]] of $Y_0(z)$.
 +
File:Page 359Abramowitz-Stegun(Bessel functions).jpg|Bessel functions from [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/ Abramowitz&Stegun]
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 06:05, 10 June 2015

Bessel functions (of the second kind) $Y_{\nu}$ are defined via the formula $$Y_{\nu}(z)=\dfrac{J_{\nu}(z)\cos(\nu \pi)-J_{-\nu}(z)}{\sin(\nu \pi)}.$$


Properties

  1. REDIRECT Bessel J and Y solve Bessel's differential equation
<center>Bessel functions
</center>