Difference between revisions of "Spherical Bessel y"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Relationship between spherical Bessel y sub nu and cosine}}
<strong>Theorem:</strong> The following formula holds for non-negative integers $n$:
 
$$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<center>{{:Bessel functions footer}}</center>
 
<center>{{:Bessel functions footer}}</center>

Revision as of 06:35, 10 June 2015

The spherical Bessel function of the second kind is $$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$ where $Y_{\nu}$ denotes the Bessel function of the second kind.

Properties

Theorem

The following formula holds for non-negative integers $n$: $$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right),$$ where $y_n$ denotes the spherical Bessel function of the second kind and $\cos$ denotes the cosine function.

Proof

References

<center>Bessel functions
</center>