Difference between revisions of "Relationship between spherical Bessel j and sine"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds for non-...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Relationship between spherical Bessel j sub nu and sine|Theorem]]:</strong> The following formula holds for non-negative integers $n$: | <strong>[[Relationship between spherical Bessel j sub nu and sine|Theorem]]:</strong> The following formula holds for non-negative integers $n$: | ||
− | $$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\sin z}{z} \right) | + | $$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\sin z}{z} \right),$$ |
+ | where $j_n$ denotes the [[Spherical Bessel j sub nu|spherical Bessel function of the first kind]] and $\sin$ denotes the [[sine]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 06:38, 10 June 2015
Theorem: The following formula holds for non-negative integers $n$: $$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\sin z}{z} \right),$$ where $j_n$ denotes the spherical Bessel function of the first kind and $\sin$ denotes the sine function.
Proof: █