Difference between revisions of "Buchstab function"
From specialfunctionswiki
Line 1: | Line 1: | ||
The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | The Buchstab function is a [[continuous]] function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the [[initial value problem]] | ||
$$\dfrac{d}{du}(u\omega(u-1)); u \geq 2$$ | $$\dfrac{d}{du}(u\omega(u-1)); u \geq 2$$ | ||
− | and for $1 \leq u \ | + | and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$. |
Revision as of 05:12, 17 July 2015
The Buchstab function is a continuous function $\omega \colon [1,\infty) \rightarrow (0,\infty)$ defined by the initial value problem $$\dfrac{d}{du}(u\omega(u-1)); u \geq 2$$ and for $1 \leq u \leq 2$, $\omega(u)=\dfrac{1}{u}$.