Difference between revisions of "Incomplete beta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The incomplete beta function is defined by $$B_x(a,b)=\displaystyle\int_0^x t^{a-1}(1-t)^{b-1} dt.$$ =Properties= <div class="toccolours mw-collapsible mw-collapsed"> <strong...")
 
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Relationship between incomplete beta and hypergeometric pfq}}
<strong>Theorem:</strong> The following formula holds:
 
$$B_x(a,b)=\dfrac{x^a}{a} {}_2F_1(a,1-b;a+1;x),$$
 
where $B_x$ denotes the [[incomplete beta function]] and ${}_2F_1$ denotes the [[hypergeometric pFq]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 

Revision as of 17:37, 25 July 2015

The incomplete beta function is defined by $$B_x(a,b)=\displaystyle\int_0^x t^{a-1}(1-t)^{b-1} dt.$$

Properties

Theorem

The following formula holds: $$B_x(a,b)=\dfrac{x^a}{a} {}_2F_1(a,1-b;a+1;x),$$ where $B_x$ denotes the incomplete beta function and ${}_2F_1$ denotes the hypergeometric pFq.

Proof

References