Difference between revisions of "Kelvin ber"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{ber}_{\nu}$ function is defined as
 
The $\mathrm{ber}_{\nu}$ function is defined as
$$\mathrm{ber}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$
+
$$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$
 
where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 
where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Domcolkelvinbersub0.png|[[Domain coloring]] of $\mathrm{ber}_0$.
 +
</gallery>
 +
</div>

Revision as of 03:12, 21 August 2015

The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.