Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$. =Properties=...")
 
(Properties)
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
{{:q-Euler formula for E sub q}}
 
{{:q-Euler formula for E sub q}}
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$
 +
where $D_q$ is the [[q-difference operator]], $\mathrm{Sin}_q$ is the [[Q-Sin|$q$-Sine function]], and $\mathrm{Cos}_q$ is the [[Q-Cos|$q$-cosine function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]

Revision as of 21:47, 5 September 2015

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof:

References

[1]