Difference between revisions of "Q-Sin"
From specialfunctionswiki
(Created page with "The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$. =Properties=...") |
(→Properties) |
||
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
{{:q-Euler formula for E sub q}} | {{:q-Euler formula for E sub q}} | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ | ||
+ | where $D_q$ is the [[q-difference operator]], $\mathrm{Sin}_q$ is the [[Q-Sin|$q$-Sine function]], and $\mathrm{Cos}_q$ is the [[Q-Cos|$q$-cosine function]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
=References= | =References= | ||
[http://homepage.tudelft.nl/11r49/documents/as98.pdf] | [http://homepage.tudelft.nl/11r49/documents/as98.pdf] |
Revision as of 21:47, 5 September 2015
The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$.
Properties
Theorem
The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.
Proof
References
Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.
Proof: █