Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 9: Line 9:
 
$$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$
 
$$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$
 
where $D_q$ is the [[q-difference operator]], $\mathrm{Sin}_q$ is the [[Q-Sin|$q$-Sine function]], and $\mathrm{Cos}_q$ is the [[Q-Cos|$q$-cosine function]].
 
where $D_q$ is the [[q-difference operator]], $\mathrm{Sin}_q$ is the [[Q-Sin|$q$-Sine function]], and $\mathrm{Cos}_q$ is the [[Q-Cos|$q$-cosine function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The [[general solution]] of the [[q-difference equation|$q$-difference equation]] $D_q^2 y(x) + k^2 y(x) = 0$
 +
is $y(x)=c_1 \mathrm{Cos}_q(kz) + c_2 \mathrm{Sin}_q(kz).$
 +
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 21:49, 5 September 2015

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof:

Theorem: The general solution of the $q$-difference equation $D_q^2 y(x) + k^2 y(x) = 0$ is $y(x)=c_1 \mathrm{Cos}_q(kz) + c_2 \mathrm{Sin}_q(kz).$

Proof:

References

[1]