Difference between revisions of "Scorer Gi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Relationship between Scorer Gi and Airy functions}}
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)dt + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t)dt,$$
 
where $\mathrm{Gi}$ denotes the [[Scorer Gi]] function, $\mathrm{Ai}$ denotes the [[Airy Ai]] function, and $\mathrm{Bi}$ denotes the [[Airy Bi]] function.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=See Also=
 
=See Also=

Revision as of 17:32, 31 December 2015

The Scorer $\mathrm{Gi}$ function is a solution of the differential equation $y(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula $$\mathrm{Gi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \sin \left( \dfrac{t^3}{3}+xt \right)dt.$$

Properties

Theorem

The following formula holds: $$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)\mathrm{d}t + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t) \mathrm{d}t,$$ where $\mathrm{Gi}$ denotes the Scorer Gi function, $\mathrm{Ai}$ denotes the Airy Ai function, and $\mathrm{Bi}$ denotes the Airy Bi function.

Proof

References

See Also

Airy Ai
Airy Bi
Scorer Hi