Difference between revisions of "Riemann function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$ =Properties=...")
 
Line 16: Line 16:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />

Revision as of 22:52, 31 December 2015

The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$

Properties

Theorem: The Riemann function is is continuous.

Proof:

Theorem: The Riemann function is nowhere differentiable except at points of the form $\pi \dfrac{2p+1}{2q+1}$ with $p,q \in \mathbb{Z}$.

Proof:

References

[1]