Difference between revisions of "Riemann function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by  
 
The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by  
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Riemannfunction.gif|The partial sum $R(x,N)=\displaystyle\sum_{k=1}^N \dfrac{\sin(k^2 x)}{k^2}$ for various values of $N$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 13:21, 5 January 2016

The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$

Properties

Theorem: The Riemann function is is continuous.

Proof:

Theorem: The Riemann function is nowhere differentiable except at points of the form $\pi \dfrac{2p+1}{2q+1}$ with $p,q \in \mathbb{Z}$.

Proof:

References

[1]