Difference between revisions of "Polygamma"
From specialfunctionswiki
m (Tom moved page Polygamma function to Polygamma) |
|||
Line 2: | Line 2: | ||
$$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$ | $$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$ | ||
where $\log$ denotes the [[logarithm]] and $\Gamma$ denotes the [[gamma function]]. | where $\log$ denotes the [[logarithm]] and $\Gamma$ denotes the [[gamma function]]. | ||
+ | |||
+ | =See Also= | ||
+ | [[Digamma function]]<br /> | ||
+ | [[Trigamma function]]<br /> |
Revision as of 02:14, 6 January 2016
The polygamma function of order $m$, $\psi^{(m)}(z)$, is defined by the formula $$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$ where $\log$ denotes the logarithm and $\Gamma$ denotes the gamma function.