Difference between revisions of "Polygamma"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Polygamma function to Polygamma)
Line 2: Line 2:
 
$$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$
 
$$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$
 
where $\log$ denotes the [[logarithm]] and $\Gamma$ denotes the [[gamma function]].
 
where $\log$ denotes the [[logarithm]] and $\Gamma$ denotes the [[gamma function]].
 +
 +
=See Also=
 +
[[Digamma function]]<br />
 +
[[Trigamma function]]<br />

Revision as of 02:14, 6 January 2016

The polygamma function of order $m$, $\psi^{(m)}(z)$, is defined by the formula $$\psi^{(m)}(z) = \dfrac{d^m}{dz^m} \log \Gamma(z),$$ where $\log$ denotes the logarithm and $\Gamma$ denotes the gamma function.

See Also

Digamma function
Trigamma function