Difference between revisions of "Faber F2"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Faber function $F_2$ is defined by
 
The Faber function $F_2$ is defined by
 
$$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$
 
$$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Faberf2plot.png|Graph of $F_2$.
 +
</gallery>
 +
</div>
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The Faber function $F_2$ is [[continuous]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The Faber function $F_2$ is [[nowhere differentiable]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
=See Also=
 
=See Also=

Revision as of 19:38, 22 January 2016

The Faber function $F_2$ is defined by $$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$

Properties

Theorem: The Faber function $F_2$ is continuous.

Proof:

Theorem: The Faber function $F_2$ is nowhere differentiable.

Proof:

See Also

Faber function F1

References

[1]