Difference between revisions of "Derivative of sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Derivative of sine|Proposition]]:</strong> The following formula holds: $\dfrac{d}{dx} \sin(x) = \cos(x)$, where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function.
+
<strong>[[Derivative of sine|Proposition]]:</strong> The following formula holds:  
 +
$$\dfrac{d}{dx} \sin(x) = \cos(x),$$
 +
where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 19:59, 7 February 2016

Proposition: The following formula holds: $$\dfrac{d}{dx} \sin(x) = \cos(x),$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof: