Difference between revisions of "Taylor series of sine"
Line 4: | Line 4: | ||
where $\sin$ denotes the [[sine]] function. | where $\sin$ denotes the [[sine]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
− | <strong>Proof:</strong> Using the [[Taylor series of the exponential function]] | + | <strong>Proof:</strong> Using the [[Taylor series of the exponential function]] and the definition of $\sin$, |
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
\sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ | \sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ | ||
− | &= \dfrac{1}{2i} \left[ \displaystyle\sum_{ | + | &= \dfrac{1}{2i} \left[ \displaystyle\sum_{n=0}^{\infty} \dfrac{i^n (z-z_0)^n}{n!} - \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n i^n (z-z_0)^n}{n!} \right] \\ |
− | &= \dfrac{1}{2i} \displaystyle\sum_{ | + | &= \dfrac{1}{2i} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n). |
\end{array}$$ | \end{array}$$ | ||
− | Note that if $ | + | Note that if $n=2k$ is a positive even integer, then |
− | $$i^ | + | $$i^n(1-(-1)^n)=i^{2k}(1-(-1)^{2k})=0,$$ |
− | and if $ | + | and if $n=2k+1$ is a positive odd integer, then |
− | $$i^ | + | $$i^n(1-(-1)^n)=i^{2k+1}(1-(-1)^{2k+1})=2i(-1)^k.$$ |
Hence we have derived | Hence we have derived | ||
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
− | \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{ | + | \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n) \\ |
− | &=\displaystyle\sum_{ | + | &=\displaystyle\sum_{n \mathrm{\hspace{2pt} odd},n>0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n) \\ |
− | &= \displaystyle\sum_{ | + | &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, |
\end{array}$$ | \end{array}$$ | ||
as was to be shown. █ | as was to be shown. █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 07:39, 25 March 2016
Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.
Proof: Using the Taylor series of the exponential function and the definition of $\sin$, $$\begin{array}{ll} \sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ &= \dfrac{1}{2i} \left[ \displaystyle\sum_{n=0}^{\infty} \dfrac{i^n (z-z_0)^n}{n!} - \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n i^n (z-z_0)^n}{n!} \right] \\ &= \dfrac{1}{2i} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n). \end{array}$$ Note that if $n=2k$ is a positive even integer, then $$i^n(1-(-1)^n)=i^{2k}(1-(-1)^{2k})=0,$$ and if $n=2k+1$ is a positive odd integer, then $$i^n(1-(-1)^n)=i^{2k+1}(1-(-1)^{2k+1})=2i(-1)^k.$$ Hence we have derived $$\begin{array}{ll} \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n) \\ &=\displaystyle\sum_{n \mathrm{\hspace{2pt} odd},n>0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n) \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, \end{array}$$ as was to be shown. █