Difference between revisions of "Factorial"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer | Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer | ||
$$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$ | $$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$ | ||
− | + | ||
+ | =See Also= | ||
+ | [[Gamma function]] |
Revision as of 22:37, 28 April 2016
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer $$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$