Difference between revisions of "Derivative of sinh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\sinh$$(x)=$Cosh|$\cos...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Derivative of sinh|Proposition]]:</strong> $\dfrac{d}{dx}$[[Sinh|$\sinh$]]$(x)=$[[Cosh|$\cosh$]]$(x)$
+
<strong>[[Derivative of sinh|Proposition]]:</strong> The following formula holds:
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \sinh(x) = \cosh(x),$$
 +
where $\sinh$ denotes the [[sinh|hyperbolic sine]] and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 04:45, 7 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \sinh(x) = \cosh(x),$$ where $\sinh$ denotes the hyperbolic sine and $\cosh$ denotes the hyperbolic cosine.

Proof: