Difference between revisions of "Derivative of sinh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Derivative of sinh|Proposition]]:</strong> The following formula holds:
 
<strong>[[Derivative of sinh|Proposition]]:</strong> The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \sinh(x) = \cosh(x),$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \sinh(z) = \cosh(z),$$
 
where $\sinh$ denotes the [[sinh|hyperbolic sine]] and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
where $\sinh$ denotes the [[sinh|hyperbolic sine]] and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 00:24, 11 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sinh(z) = \cosh(z),$$ where $\sinh$ denotes the hyperbolic sine and $\cosh$ denotes the hyperbolic cosine.

Proof: From the definition, $$\sinh(z) = \dfrac{e^z-e^{-z}}{2},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the hyperbolic cosine, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sinh(z)=\dfrac{e^z + e^{-z}}{2}=\cosh(z),$$ as was to be shown. █