Difference between revisions of "E"
From specialfunctionswiki
(→Properties) |
|||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The folllowing formula holds: | ||
+ | $$e=\displaystyle\lim_{k \rightarrow \infty} \left( 1 + \dfrac{1}{k} \right)^k,$$ | ||
+ | where $e$ denotes [[E|Euler's constant]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Theorem:</strong> The real number $e$ is [[irrational]]. | <strong>Theorem:</strong> The real number $e$ is [[irrational]]. |
Revision as of 21:03, 13 May 2016
The number $e$ can be defined in the following way: let $f$ be the unique solution of the initial value problem $$y'=y;y(0)=1,$$ then $e=f(1)$.
Properties
Theorem: The folllowing formula holds: $$e=\displaystyle\lim_{k \rightarrow \infty} \left( 1 + \dfrac{1}{k} \right)^k,$$ where $e$ denotes Euler's constant.
Proof: █
Theorem: The real number $e$ is irrational.
Proof: proof goes here █