Difference between revisions of "E"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The folllowing formula holds:
 +
$$e=\displaystyle\lim_{k \rightarrow \infty} \left( 1 + \dfrac{1}{k} \right)^k,$$
 +
where $e$ denotes [[E|Euler's constant]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The real number $e$ is [[irrational]].
 
<strong>Theorem:</strong> The real number $e$ is [[irrational]].

Revision as of 21:03, 13 May 2016

The number $e$ can be defined in the following way: let $f$ be the unique solution of the initial value problem $$y'=y;y(0)=1,$$ then $e=f(1)$.

Properties

Theorem: The folllowing formula holds: $$e=\displaystyle\lim_{k \rightarrow \infty} \left( 1 + \dfrac{1}{k} \right)^k,$$ where $e$ denotes Euler's constant.

Proof:

Theorem: The real number $e$ is irrational.

Proof: proof goes here █

References

Who proved $e$ is irrational?