Difference between revisions of "Nielsen-Ramanujan sequence"
From specialfunctionswiki
(Created page with "The Nielsen-Ramanujan sequence $\{a_k\}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.") |
|||
Line 1: | Line 1: | ||
− | The Nielsen-Ramanujan sequence $\{a_k\}$ is given by | + | The Nielsen-Ramanujan sequence $\{a_k\}_{k=0}^{\infty}$ is given by |
$$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ | $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ | ||
where $\log$ denotes the [[logarithm]]. | where $\log$ denotes the [[logarithm]]. |
Revision as of 18:03, 14 May 2016
The Nielsen-Ramanujan sequence $\{a_k\}_{k=0}^{\infty}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.