Difference between revisions of "Nielsen-Ramanujan sequence"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Nielsen-Ramanujan sequence $\{a_k\}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.")
 
Line 1: Line 1:
The Nielsen-Ramanujan sequence $\{a_k\}$ is given by
+
The Nielsen-Ramanujan sequence $\{a_k\}_{k=0}^{\infty}$ is given by
 
$$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$
 
$$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$
 
where $\log$ denotes the [[logarithm]].
 
where $\log$ denotes the [[logarithm]].

Revision as of 18:03, 14 May 2016

The Nielsen-Ramanujan sequence $\{a_k\}_{k=0}^{\infty}$ is given by $$a_k=\displaystyle\int_1^2 \dfrac{(\log(x))^k}{x-1} \mathrm{d}x,$$ where $\log$ denotes the logarithm.