Difference between revisions of "Relationship between spherical Bessel j and sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Relationship between spherical Bessel j sub nu and sine|Theorem]]:</strong> The following formula holds for non-negative integers $n$:
 
<strong>[[Relationship between spherical Bessel j sub nu and sine|Theorem]]:</strong> The following formula holds for non-negative integers $n$:
$$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\sin z}{z} \right),$$
+
$$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{\mathrm{d}}{\mathrm{d}z} \right)^n \left( \dfrac{\sin z}{z} \right),$$
 
where $j_n$ denotes the [[Spherical Bessel j sub nu|spherical Bessel function of the first kind]] and $\sin$ denotes the [[sine]] function.
 
where $j_n$ denotes the [[Spherical Bessel j sub nu|spherical Bessel function of the first kind]] and $\sin$ denotes the [[sine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 20:16, 15 May 2016

Theorem: The following formula holds for non-negative integers $n$: $$j_n(z)=(-1)^nz^n \left( \dfrac{1}{z} \dfrac{\mathrm{d}}{\mathrm{d}z} \right)^n \left( \dfrac{\sin z}{z} \right),$$ where $j_n$ denotes the spherical Bessel function of the first kind and $\sin$ denotes the sine function.

Proof: