Difference between revisions of "Derivative of tanh"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Derivative of tanh|Proposition]]:</strong> The following formula holds: | <strong>[[Derivative of tanh|Proposition]]:</strong> The following formula holds: | ||
− | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\sech(x),$$ | + | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\mathrm{sech}(x),$$ |
− | where $\tanh$ denotes the [[tanh|hyperbolic tangent]] and $\sech$ denotes the [[sech|hyperbolic secant]]. | + | where $\tanh$ denotes the [[tanh|hyperbolic tangent]] and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 20:28, 15 May 2016
Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\mathrm{sech}(x),$$ where $\tanh$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes the hyperbolic secant.
Proof: █