Difference between revisions of "Derivative of arccot"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccot}(...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Derivative of arccot|Theorem]]:</strong>  
+
<strong>[[Derivative of arccot|Theorem]]:</strong> The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccot}(z) = -\dfrac{1}{z^2+1}$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccot}(z) = -\dfrac{1}{z^2+1},$$
 +
where $\mathrm{arccot}$ denotes the [[arccot|inverse cotangent]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> If $y=\mathrm{arccot}(z)$ then $\cot(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
 
<strong>Proof:</strong> If $y=\mathrm{arccot}(z)$ then $\cot(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get

Revision as of 21:38, 15 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccot}(z) = -\dfrac{1}{z^2+1},$$ where $\mathrm{arccot}$ denotes the inverse cotangent function.

Proof: If $y=\mathrm{arccot}(z)$ then $\cot(y)=z$. Now use implicit differentiation with respect to $z$ to get $$-\csc^2(y)y'=1.$$ Substituting back in $y=\mathrm{arccos}(z)$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccot}(z) = -\dfrac{1}{\csc^2(\mathrm{arccot}(z))} = -\dfrac{1}{z^2+1},$$ as was to be shown. █