Difference between revisions of "Derivative of arcsec"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Derivative of arcsec|Theorem]]:</strong> The following formula holds:
 
<strong>[[Derivative of arcsec|Theorem]]:</strong> The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = -\dfrac{1}{\sqrt{z^2-1}|z|},$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}},$$
 
where $\mathrm{arcsec}$ is the [[arcsec|inverse secant]] function.
 
where $\mathrm{arcsec}$ is the [[arcsec|inverse secant]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 23:13, 15 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}},$$ where $\mathrm{arcsec}$ is the inverse secant function.

Proof: