Difference between revisions of "Gamma(n+1)=n!"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> If $n \in \{0,1,2,\ldots\}$, then $$\Gamma(n+1)=n!,$$ where $n!$...")
 
Line 2: Line 2:
 
<strong>[[Gamma at positive integers|Theorem]]:</strong> If $n \in \{0,1,2,\ldots\}$, then  
 
<strong>[[Gamma at positive integers|Theorem]]:</strong> If $n \in \{0,1,2,\ldots\}$, then  
 
$$\Gamma(n+1)=n!,$$
 
$$\Gamma(n+1)=n!,$$
where $n!$ denotes the [[factorial]] of $n$.
+
where $\Gamma$ denotes the [[gamma]] function and $n!$ denotes the [[factorial]] of $n$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █  
 
<strong>Proof:</strong>  █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 05:48, 16 May 2016

Theorem: If $n \in \{0,1,2,\ldots\}$, then $$\Gamma(n+1)=n!,$$ where $\Gamma$ denotes the gamma function and $n!$ denotes the factorial of $n$.

Proof: