Difference between revisions of "Antiderivative of hyperbolic cosecant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \math...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Antiderivative of hyperbolic cosecant|Theorem]]:</strong> The following formula holds:
 
<strong>[[Antiderivative of hyperbolic cosecant|Theorem]]:</strong> The following formula holds:
$$\displaystyle\int \mathrm{csch}(z)dz = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$
+
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 08:19, 16 May 2016

Theorem: The following formula holds: $$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant, $\log$ denotes the logarithm, and $\tanh$ denotes the hyperbolic tangent.

Proof: