Difference between revisions of "Derivative of coth"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Derivative of coth|Proposition]]:</strong> The following formula holds:
+
<strong>[[Derivative of coth|Theorem]]:</strong> The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].

Revision as of 08:24, 16 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.

Proof: