Difference between revisions of "Derivative of coth"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Derivative of coth| | + | <strong>[[Derivative of coth|Theorem]]:</strong> The following formula holds: |
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ | ||
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]]. | where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]]. |
Revision as of 08:24, 16 May 2016
Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.
Proof: █