Difference between revisions of "Sine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The sine integral is defined by
 
The sine integral is defined by
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) dt; |\mathrm{arg} z|<\pi,$$
+
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t; |\mathrm{arg} z|<\pi,$$
 
where $\mathrm{sinc}$ denotes the [[Sinc]] function.
 
where $\mathrm{sinc}$ denotes the [[Sinc]] function.
  

Revision as of 05:41, 17 May 2016

The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t; |\mathrm{arg} z|<\pi,$$ where $\mathrm{sinc}$ denotes the Sinc function.

Relationship to other functions

Theorem

The following formula holds: $$\mathrm{Ei}(ix)=\mathrm{Ci}(x)+i\mathrm{Si}(x),$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\mathrm{Ci}$ denotes the cosine integral, and $\mathrm{Si}$ denotes the sine integral.

Proof

References

Videos

Laplace Transform of Sine Integral

References

<center>$\ast$-integral functions
</center>