Difference between revisions of "Anger three-term recurrence"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Anger recurrence relation|Theorem]]:</strong> The following formula holds:
+
<strong>[[Anger three-term recurrence|Theorem]]:</strong> The following formula holds:
 
$$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$
 
$$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$
 
where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]].
 
where $\textbf{J}_{\nu}$ denote the [[Anger function]], $\pi$ denotes [[pi]], and $\sin$ denotes [[sine]].

Revision as of 16:45, 23 May 2016

Theorem: The following formula holds: $$\textbf{J}_{\nu-1}(z)+\textbf{J}_{\nu+1}(z)=\dfrac{2\nu}{z}\textbf{J}_{\nu}(z)-\dfrac{2}{\pi z}\sin(\pi \nu),$$ where $\textbf{J}_{\nu}$ denote the Anger function, $\pi$ denotes pi, and $\sin$ denotes sine.

Proof: