Difference between revisions of "Relationship between logarithmic integral and exponential integral"
From specialfunctionswiki
Line 2: | Line 2: | ||
<strong>[[Relationship between logarithmic integral and exponential integral|Theorem]]:</strong> The following formula holds: | <strong>[[Relationship between logarithmic integral and exponential integral|Theorem]]:</strong> The following formula holds: | ||
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ | ||
− | where $\mathrm{li}$ denotes the [[logarithmic integral]] | + | where $\mathrm{li}$ denotes the [[logarithmic integral]], $\mathrm{Ei}$ denotes the [[exponential integral Ei]], and $\log$ denotes the [[logarithm]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 21:14, 23 May 2016
Theorem: The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denotes the logarithmic integral, $\mathrm{Ei}$ denotes the exponential integral Ei, and $\log$ denotes the logarithm.
Proof: █