Difference between revisions of "Relationship between logarithmic integral and exponential integral"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
<strong>[[Relationship between logarithmic integral and exponential integral|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between logarithmic integral and exponential integral|Theorem]]:</strong> The following formula holds:
 
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$
 
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$
where $\mathrm{li}$ denotes the [[logarithmic integral]] and $\mathrm{Ei}$ denotes the [[exponential integral Ei]].
+
where $\mathrm{li}$ denotes the [[logarithmic integral]], $\mathrm{Ei}$ denotes the [[exponential integral Ei]], and $\log$ denotes the [[logarithm]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 21:14, 23 May 2016

Theorem: The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denotes the logarithmic integral, $\mathrm{Ei}$ denotes the exponential integral Ei, and $\log$ denotes the logarithm.

Proof: