Difference between revisions of "Fresnel S"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 8: Line 8:
 
File:Complexfresnelsplot.png | [[Domain coloring]] of [[analytic continuation]] of Fresnel $S$.
 
File:Complexfresnelsplot.png | [[Domain coloring]] of [[analytic continuation]] of Fresnel $S$.
 
</gallery>
 
</gallery>
</div>
 
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following limit is known:
 
$$\displaystyle\lim_{x \rightarrow \infty} S(x) = \displaystyle\int_0^{\infty} \sin(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
 
</div>
 
</div>
  

Revision as of 22:42, 23 May 2016

The Fresnel $S$ function is defined by $$S(z)=\int_0^z \sin(t^2) dt.$$ (Note in Abramowitz&Stegun it is defined differently.)

See Also

Fresnel C

Videos

The Fresnel Integral S(x) - How to integrate sin(x^2)

<center>$\ast$-integral functions
</center>