Difference between revisions of "Barnes G"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Barnes G at z+1}}
<strong>Theorem:</strong> The following formula holds:
 
$$G(z+1)=\Gamma(z)G(z)$$
 
with normalization $G(1)=1$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 00:43, 24 May 2016

The Barnes $G$ function is defined by the following Weierstrass factorization: $$G(1+z)=(2\pi)^{\frac{z}{2}} \exp \left( - \dfrac{z+z^2(1+\gamma)}{2} \right) \displaystyle\prod_{k=1}^{\infty} \left\{ \left( 1+\dfrac{z}{k} \right)^k \exp \left( \dfrac{z^2}{2k}-z \right) \right\},$$ where $\exp$ denotes the exponential function and $\gamma$ denotes the Euler-Mascheroni constant.

Properties

Barnes G at z+1

Corollary: The following values hold: $$G(n) = \left\{ \begin{array}{ll} 0 &; n=-1,-2,\ldots \\ \displaystyle\prod_{i=0}^{n-2} i!&; n=0,1,2,\ldots \end{array} \right.$$

Proof: