Difference between revisions of "Dirichlet eta"
From specialfunctionswiki
Line 6: | Line 6: | ||
<gallery> | <gallery> | ||
File:Dirichletetaplot.png|Graph of $\eta$. | File:Dirichletetaplot.png|Graph of $\eta$. | ||
− | File: | + | File:Complexdirichletetaplot.png|[[Domain coloring]] of $\eta$. |
</gallery> | </gallery> | ||
</div> | </div> |
Revision as of 07:32, 24 May 2016
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.
Domain coloring of $\eta$.