Difference between revisions of "Dirichlet beta"

From specialfunctionswiki
Jump to: navigation, search
Line 13: Line 13:
 
=Properties=
 
=Properties=
 
{{:Catalan's constant using Dirichlet beta}}
 
{{:Catalan's constant using Dirichlet beta}}
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:26, 24 May 2016

The Dirichlet $\beta$ function is defined by $$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\Phi$ denotes the Lerch transcendent.


Properties

Theorem

The following formula holds: $$K=\beta(2),$$ where $K$ is Catalan's constant and $\beta$ denotes the Dirichlet beta function.

Proof

References