Difference between revisions of "Scorer Gi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 9: Line 9:
 
[[Airy Bi]]<br />
 
[[Airy Bi]]<br />
 
[[Scorer Hi]]<br >
 
[[Scorer Hi]]<br >
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:29, 24 May 2016

The Scorer $\mathrm{Gi}$ function is a solution of the differential equation $y(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula $$\mathrm{Gi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \sin \left( \dfrac{t^3}{3}+xt \right)dt.$$

Properties

Theorem

The following formula holds: $$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)\mathrm{d}t + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t) \mathrm{d}t,$$ where $\mathrm{Gi}$ denotes the Scorer Gi function, $\mathrm{Ai}$ denotes the Airy Ai function, and $\mathrm{Bi}$ denotes the Airy Bi function.

Proof

References

See Also

Airy Ai
Airy Bi
Scorer Hi