Difference between revisions of "Riemann Siegel theta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Riemann Siegel $\vartheta$ function is defined for $t \in \mathbb{R}$ by $$\vartheta(t) = \mathrm{Im} \left( \log \Gamma \left(\dfrac{1}{4}+ i \dfrac{t}{2} \right) - \dfra...")
 
 
Line 9: Line 9:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:33, 24 May 2016

The Riemann Siegel $\vartheta$ function is defined for $t \in \mathbb{R}$ by $$\vartheta(t) = \mathrm{Im} \left( \log \Gamma \left(\dfrac{1}{4}+ i \dfrac{t}{2} \right) - \dfrac{t \log \pi}{2} \right),$$ where $\log$ denotes the logarithm and $\Gamma$ denotes the gamma function.