Difference between revisions of "Weierstrass elliptic"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(...")
 
Line 1: Line 1:
 
The Weierstrass elliptic function is  
 
The Weierstrass elliptic function is  
 
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$
 
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:38, 24 May 2016

The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$